CITY OF CONROE SUBDIVISION IMPROVEMENT PLANS CHECKLIST

SUBMIT THREE FINAL SETS OF PLANS (maximum size 24”X36”), OTHER ITEMS LISTED, AND THIS COMPLETED, CERTIFIED CHECKLIST TO THE ENGINEERING DEPARTMENT.

THE FOLLOWING TECHNICAL STANDARDS AND SPECIFICATIONS HAVE BEEN APPROVED AND ADOPTED BY THE CITY AND SHALL BE CONSIDERED MINIMUM ENGINEERING DESIGN REQUIREMENTS:

A. "City of Conroe Design Manual for Sanitary Sewers, Water Mains, Storm Drainage and Street Paving" (94-181(b(1))).
B. "City of Conroe Standard Specifications for Construction of Water and Sanitary Sewer" (94-181(b(2))).
C. "City of Conroe Standard Specifications for Construction of Streets and Drainage" (94-181(b(3))).

ALL BLANKS IN THE “ENG” COLUMN SHALL BE FILLED IN WITH EITHER A CHECKMARK FOR "COMPLETED" OR N/A FOR "NOT APPLICABLE". (THE OTHER COLUMN IS FOR CITY USE.)

THE FOLLOWING INFORMATION MUST BE INCLUDED IN/WITH THE PLANS (NOTE THAT THIS LIST AND THE ATTACHED DESIGN INFORMATION ARE NOT MEANT TO REPLACE THE TECHNICAL STANDARDS AND SPECIFICATIONS PREVIOUSLY LISTED, AND MAY NOT INCLUDE ALL INFORMATION REQUIRED FOR A SPECIFIC PROJECT. FOR MORE INFORMATION, CONTACT STAFF AT 936-522-3100)

<table>
<thead>
<tr>
<th></th>
<th>CITY</th>
<th>ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cover sheet</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Layout sheet(s) showing all subdivision improvements</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Drainage Area map</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Erosion Protection plan</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Traffic Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan and Profile sheets with complete design for all water, sewer, drainage, and paving improvements</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Complete Calculations for all water, sewer, drainage, and paving improvements</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>A Geotechnical Report (plan approval may be “subject to” receipt of this item)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Any required offsite easements</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>An engineer’s itemized estimate for the total cost of required improvements</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Copy of the NOI and Permit</td>
<td></td>
</tr>
</tbody>
</table>

I (we) understand and voluntarily agree that any engineering drawings, designs, and/or works submitted to the City of Conroe in connection with this application, copies of such submittals will be deemed to be public information subject to release in accordance with the Texas public information act. If the firm or engineer seeks to withhold the release of copies of the submitted documents, that desire must be specifically written and furnished along with this application to the City of Conroe.

PLAN COMPLIANCE STATEMENT:

I certify that the Subdivision Improvement Plans known as: __

have been prepared in accordance with City of Conroe regulations and ordinances in effect at the time of submission, City of Conroe standard details and specifications, all requirements for approval of the Plat and all other applicable local, state, and federal requirements.

Engineer's name, date, and registration number
The following stamp must be visible in the lower right-hand corner of each sheet of the engineering plans.

Click [here](#) for the CAD drawing of the Approval Stamp. Adjust stamp size to 3” X 4”.
SUBDIVISION IMPROVEMENT
PLANS FORM

SUBMITTAL INFORMATION

The following is a list of items generally necessary for complete Subdivision Improvement Plan submittals. It is provided as a tool to assist the engineer in preparing a submittal with all pertinent items. All plans, calculations, reports, and details must be sealed by the responsible engineer.

PLANS:

ALL SHEETS:
1. Engineer’s seal (signed and dated)
2. Maximum 24” x 36” sheet size.
3. All sheets must be consistent and must match all calculations and the plat, with preliminary plat comments addressed as applicable.
4. Show and label all pertinent items, including the boundary, blocks, lots, rights-of-way (with street names), reserves, easements, building lines, floodplain and floodway, etc. in and adjacent to the subdivision. Label any existing and proposed private streets and other private improvements.
5. Use a standard engineering scale.
6. Provide a North arrow.
7. Use consistent symbols, line weights and line types (City of Conroe standard preferred). All items shown shall be labeled clearly. All information shall be legible. Use of legends, curve tables, line tables, and similar labeling aids is acceptable.

COVER SHEET:
1. Provide the engineer’s name and address.
2. Engineer’s certification adjacent to seal: “I certify that these plans which bear my seal have been prepared by me or under my direct supervision and are in compliance with all applicable City of Conroe, state, and federal requirements.”
3. Provide a vicinity map, reasonably showing the project location. Label adjacent streets and major streets.
4. Specify the correct title and description of the project.
5. If standard City notes and detail sheets are omitted, include a prominent note stating that: “All construction shall be in accordance with standard City of Conroe notes, specifications, and details” (preferably on each plan and profile sheet).
6. Any details/specifications that are included shall not contradict standard City notes, details, and specifications.

UTILITY LAYOUT (combined water/san. sewer/paving/drainage layouts are acceptable):
1. Show and label proposed and existing water and sanitary sewer layout for entire project on one sheet (unless infeasible), including ties into existing utilities, stubs for future extension (including utilities across entire frontage if needed to serve adjacent property), and individual service leads to each lot (no “wyes”).
2. Show and label all line sizes, materials, and appurtenances. Manholes shall be numbered.
3. Sanitary sewer and water appurtenances and connections (including service connections) shall not be in/under pavement except with specific approval.
4. Where open ditches are allowed, utility appurtenances (manholes, fire hydrants, valves, etc.) shall not be located within the shoulder or ditch.
5. Water line material – C900/C905 DR 18 pvc or DIP; sanitary sewer line material – SDR 26 150psi pvc (with pressure joints at water line crossings, including all leads). All information shall be clear and legible.
6. Show and label all easements. All utilities shall be at least 5’ inside the right-of-way or public easement boundary, unless more stringent requirements apply. Easement widths shall be as outlined in the Ordinance and Design Manual.
7. Observe Texas Commission on Environmental Quality (TCEQ) separation distances. The outside edge of all water line connections (bends, reducers, wyes, etc.) and appurtenances (fire hydrants, valves, etc.) shall be at least 9’ from the outside of all manholes or other sanitary sewer appurtenances.
8. Parallel water and sewer lines shall generally be on opposite sides of the street and in no case less than 4’ apart.

9. Water lines shall be separated by at least 4’ from parallel utilities other than sanitary sewer lines. In the case of parallel storm sewer larger than 60” diameter, provide 4’ of undisturbed earth in between.

PAVING AND DRAINAGE LAYOUT, AND DRAINAGE AREA MAP (combined water/san. sewer/paving/drainage layouts acceptable)

1. Show and label proposed and existing pavement (including medians, sidewalks, 5’ shoulders, and temporary culs-de-sac where applicable) and drainage layout with existing and proposed contours (2’ max. interval) for entire project on one sheet (unless infeasible), including ties into existing roads, sidewalks, and drainage systems. Specify all pavement dimensions.

2. On this or a separate sheet, show and label all drainage areas, including offsite drainage areas affecting this subdivision (supported by complete contours), as well as drainage area acreages and flows. No new subdivision shall be designed, constructed, or maintained so as to unreasonably impede, alter or concentrate surface waters.

3. Show and label all line sizes, materials, and appurtenances.

4. Manholes, junction boxes, and inlets shall be numbered.

5. Specify the type and opening size of all inlets. Maximum 400’ gutter run to an inlet (6” curb).

6. Storm sewer lines and connections may be in/under pavement if desired.

7. Storm sewer material – Class III RCP. All information shall be clear and legible.

8. Show and label all ditches, swales, culverts, headwalls, erosion control, detention ponds, and any other drainage structures or facilities. Indicate direction of flow.

9. Where roadside ditches are allowed, show the ditch locations accurately based on a 5’ shoulder adjacent to the pavement and 3:1 maximum slopes on both sides of the ditch. Include arrows indicating the direction of flow. Show proposed driveways and label culvert sizes.

10. Show and label all easements. All storm sewer shall be at least 5’ inside the right-of-way or easement boundary, unless more stringent requirements apply. Provide easement widths and locations as specified in the Ordinance and Design Manual.

11. Detention ponds shall be located in reserves or private easements dedicated to the property owners for maintenance, with provisions for the city to access, maintain, and impose liens if needed.

12. Show and label street lights and street signs, and other traffic control signs/markings justified by an Engineering study. Street lights shall be placed at all intersections and culs-de-sac, and alternating from side to side of all streets at maximum 300’ intervals throughout.

ALL PLAN AND PROFILE SHEETS:

1. Profile vertical scale shall be 1/10th the horizontal scale.

2. Provide complete, clear stationing. Generally, stationing runs down the centerline of streets and is used for all improvements in/adjacent to the right-of-way. Other improvements are stationed separately.

3. Show water, sewer, paving, and drainage design in and adjacent to right-of-way on the same plan and profile sheets. Provide additional sheets for improvements not in or adjacent to right-of-way.

4. Show and label the location of all improvements within the right-of-way or easement. Where there is a governing dimension or separation distance, this shall be specified.

5. Provide a benchmark note. Projects in flood prone areas shall be tied to the NGVD 1983 datum, or latest revision shown on FEMA maps.

6. Show all information from the overall layout sheets (except drainage areas), plus complete design information including the following items as applicable.

WATER SYSTEM:

1. Provide plan and profiles of all proposed water lines. Specify material, size, and type of bedding. Generally, 8” looped water lines are needed. Smaller sizes are allowed where appropriate. Dead ends are allowed for future extension only.

2. Show all service leads in plan view. Provide a separate tap at the center of each lot, with a tapping saddle at the main.

3. Show and label the ground profile over all water lines. (Where they are substantially the same, the adjacent right-of-way
or curb profile can be labeled also as the water line ground profile.) Provide 4’ minimum cover over water lines adjacent to curbed streets, and 5’ cover (measured from the midpoint between the ditch flow line and adjacent right-of-way elevation) adjacent to uncurbed streets. Add a foot of cover if the water line is 14” diameter or larger.

4. If there is a parallel sewer line across the street and sewer service leads will be crossing the water line, it (the water line) shall be at least 1’ above the sewer line wherever feasible. Adjust cover if needed in specific locations, but in no case shall less than 2’ cover be provided. Cover less than 4’ or over 8’ requires restrained joints.

5. Deflect water lines for grade or alignment changes wherever possible (85% of manufacturers’ specification maximum), rather than using bends. Where necessary, use multiple 45° bends rather than 90° bends.

6. Provide air release valves or fire hydrants at high points in the water line.

7. Include a note placed conspicuously on all profile sheets stating that “Water lines, including service leads, shall always cross over sanitary sewer lines and service leads unless specifically shown, labeled and approved otherwise. All crossings shall be per TCEQ requirements.”

8. Provide at least 6” of separation (outside to outside of pipe) where a water line crosses any type of utility.

9. Show, station, and label all hydrants, valves, blow offs, reducers, etc. in plan and profile views.Gate valves are required at all water line intersections (2 at a tee, 3 at a cross), and generally at 1000’ intervals elsewhere, unless other requirements apply due to line size.

10. At dead ends to be extended in the future, show and label the water line plugged and clamped one full joint of pipe past the gate valve and box, and provide a 2” blow-off.

11. Augering is required when crossing active driveways, improved city streets, or within 10’ of trees 6” or larger in diameter. Show and label auger sections, including auger and receiving pits. Open cutting of streets is not allowed unless absolutely necessary.

12. Show and label ditch, county/state road, and railroad crossings.

13. Show and label fire hydrants. (Fire Department approval required.) Generally, hydrants are required at 500’ maximum intervals in residential developments and at 300’ intervals along commercial frontage, and should be placed on 8” looped water lines. One hydrant is allowed on a short dead end 6” line.

14. Hydrants should be located at intersections and within 250’ of the end of culs-de-sac. They shall not be placed in the bulb of culs-de-sac. Specify that hydrant placement is 3’ behind back-of-curb (curbed streets), or between the right-of-way line and the ditch (uncurbed streets). Fire hydrant leads shall not have bends.

15. Location and method of connecting proposed water lines to City system or private system.

16. Include all applicable details.

SANITARY SEWER:

1. Provide plan and profiles of all proposed sewer lines indicating grade, depth, flow line, size, material, length, and station of each appurtenance. Specify the type of bedding.

2. Show all service leads in plan view. Each lot requires a separate tap at the R.O.W. or easement line, 10’ downstream of the water tap. Specify where stacks will be used.

3. Minimum diameter for lateral sewers is 8”, except 6” laterals are acceptable for dead-end runs under 600’. Any sewer over 50’ long in public R.O.W. or easement shall be considered a lateral (long taps crossing right-of-way to serve abutting lots excluded).

4. Specify all flow lines at each manhole and cleanout. A manhole is required at each change of size or horizontal or vertical direction, street and easement intersections, at ends of mains and laterals, and generally at 400’ maximum intervals.

5. Where sewer line size changes, match the soffit elevations, not the flow lines, at the manhole. Provide a drop structure if the flow line in is 30” or more above the flow line out. Manholes with rims below the base flood elevation shall be sealed and vented 1’ above the base flood elevation.

6. Acute angles in the direction of flow are not allowed.

7. Observe City of Conroe minimum and maximum sewer line grades. TCEQ minimums may be approved on a case-by-case basis where needed to avoid using a larger diameter sewer line.

8. Show and label existing and proposed ground profiles over sewer lines (where substantially the same, the adjacent right-of-way or curb profile can be labeled also as the sewer line ground profile). Provide 4’ minimum cover adjacent
to curbed streets, and 6’ minimum cover adjacent to uncurbed streets.

9. Where this is not possible, use Class 150 pressure pipe with cement stabilized sand backfill (less than 3’ cover). Sewer deeper than 20’ requires specific approval.

10. Provide complete force main and lift station design, calculations, and details. (Force mains and lift stations will only be allowed where no other feasible option exists.) Force mains shall be C900 DR 18 pvc, with air release valves at high points and a drainage valve at the low point.

11. Lift stations shall have controlled access and shall be protected from the 100 year flood. Gravity lines into the wet well should discharge above the lead pump “ON” setting. Dual pumps shall be provided. Two backflow prevention devices shall be provided, including a check valve at the tank and a second check valve at the connection of the service line to the pressure collection line.

12. Location and method of connecting proposed system to the existing City System or private system.

13. Show and label all other underground and surface utilities and facilities both in parallel and at crossings.

14. Include all applicable details.

DRAINAGE AND EROSION PROTECTION:

1. For curbed streets, provide complete storm sewer. The 5 year frequency storm event drainage shall be carried in the street without overtopping the curbs. Inlets shall be sized and placed as appropriate, using a factor of safety near 2 (as specified in the TxDOT Hydraulic Manual).

2. For uncurbed streets, the 5 year flow shall be carried in the ditches.

3. For curbed and uncurbed streets, the 100 year frequency storm event drainage shall be conveyed (overland/underground) to the detention facility or otherwise mitigated, as appropriate.

4. Provide an inlet or junction box with a manhole at all changes of storm sewer size or direction. Deflection of storm sewer is allowed as specified in. The top outside of storm sewer crossing the street shall be 8” below the subgrade.

5. Specify the rim and all flow line elevations at all inlets and junction boxes. Also specify the depressed gutter flow line elevation at all inlets.

6. In profile view, show all storm sewer and label length, grade, material, size, and type of bedding of all pipes. Grades shall yield a full-flow design velocity between 3 fps and 10 fps. Provide the ground profile over all storm sewer. (Where they are substantially the same, the adjacent right-of-way or curb profile may be labeled also as the storm sewer ground profile.)

7. At pipe size changes, match soffits, not flow line elevations.

8. In profile view, show all ditches and label grades, as well as grade break stations and elevations. Ditches shall be 1.5’ to 3’ deep measured from the edge of pavement elevation, and shall have a minimum grade of 0.10 percent. (If the ditches exactly follow the grades and grade break locations of the street, this can be noted instead of providing duplicate labeling.)

9. Grass-lined ditch drainage velocity is limited to 5 fps, which occurs at about 2 percent ditch slope. Where 5 fps is exceeded, provide rip-rap, concrete lining, or other appropriate erosion control.

10. Provide an erosion protection plan.

DETENTION:

1. Where detention is required, provide complete plan view design, including complete proposed contours tying back into existing contours, pond dimensions, and details needed to construct the facility.

2. Specify the design water surface elevation and provide 1’ of freeboard above it, an emergency spillway at the design WSEL (concrete if on fill), maximum 3:1 side slopes, minimum 0.5 percent slope on the bottom of the pond (0.1 percent allowed if a concrete pilot channel is provided), and minimum 5’ wide top-of-berm.

3. Headwalls are required on all detention inflow and outflow pipes.

4. Provide an outfall structure designed to limit discharge in the 2, 10, and 100 year events to pre-development rates. Outfall pipes shall be at least 18” in diameter, restricted as necessary (8” min.). Discharge shall be directed at least 30 degrees into the direction of flow of the receiving channel, and shall outfall 1’ above the base flood elevation or normal water surface elevation, as applicable.

5. All detention ponds shall be in private easements dedicated to the property owners for maintenance, but allowing city...
access, maintenance, and imposition of liens on the property owners if necessary. If a detention pond is not adjacent to a R.O.W., provide 15’ wide access easements as needed.

6. All discharge from detention ponds shall be into a drainage easement or R.O.W. Maintenance of discharge drainage easements shall be the property owner’s responsibility.

PAVING:
1. Provide plan and profiles of all proposed pavement. Show and label complete centerline calls and stations, and right-of-way and pavement dimensions in plan view (including medians, sidewalks, intersections, and culs-de-sac). Specify existing and proposed pavement materials.
2. In plan view, specify station and top-of-curb elevation at PCs and PTs (including on medians), cross street turnout radii, beginning/end of any pavement width transitions, curb ends, and curb height changes.
3. In plan view, provide spot elevations along both edges of 5’ wide sidewalk ends, and grade breaks.
4. In profile view, show and label existing ground profiles at both right-of-way lines, and provide both top-of-curb profiles. Curbs should be below both right-of-way profiles to facilitate drainage. The right-of-way must drain to the street for curbed roads at a minimum slope of ¼” per foot, and a maximum slope of 1’ per 7’. Show and label proposed profiles where cut or fill is necessary.
5. In profile view, label all TC grades and specify the station and elevation at all grade changes. Top-of-pavement centerline profiles are only acceptable on uncurbed sections. Gutter grade is 0.25 percent minimum (0.60 percent minimum in culs-de-sac).
6. Provide a vertical curve anywhere the algebraic difference between grades exceeds 1. Specify the PI station and elevation, and stations and elevations on the curve every 10 ft. Elevation change shall be at least 0.03 ft every 10 ft.
7. Sight distance requirements based on a 40 mph or greater design speed (as applicable) shall be used when designing all vertical and horizontal curves.
8. Provide a Traffic Plan in accordance with the Texas Manual on Uniform Traffic Control Devices.
9. Include all applicable details.

CALCULATIONS:

WATER:
1. Provide calculations or flow measurements showing adequate pressure and capacity of the existing water system at the tie-in location.
2. Also provide calculations justifying 2” mains as well as any mains 12” or larger.
3. Provide complete structural calculations supporting the design of any elevated crossings.

SANITARY SEWER:
1. Provide calculations showing adequate capacity of the sewer system at the tie in location, and throughout the proposed collection system. Calculations shall account for infiltration (750 gal/ac for residential areas), and shall allow the sewer to flow at maximum capacity (80% full). The sewer shall be able to transport four times the system design daily average flow.
2. Provide calculations justifying the design of any force mains. Flow velocity shall be 3-5 fps.
3. Provide design calculations for any lift stations. Include system curves, pump curves, and head calculations at min. (pumps off) and max. (last normal operating pump on) static head and C values of 100 and 140 for each pump, and for the combination (modified pump curves). If applicable, include calculations for available net positive suction head and compare it to the required NPSH per the manufacturer. Provide calculations for wet well capacity and cycle time (min. 6 minutes for submersible pumps).

DRAINAGE AND EROSION PROTECTION:
2. Provide calculations for all storm sewers. Use the continuity equation and Manning’s equation. Account for minor losses. Full flow design velocity shall be 3-10 fps. Include hydraulic grade line calculations showing that the HGL is maintained at least 6” below the gutter line.
3. Provide ditch calculations. Design velocity in grass-lined channels shall be less than 5 fps. Include hydraulic grade
line calculations showing that the HGL is maintained at least 6” below natural ground or the edge of pavement, whichever is lower.

4. Design internal systems (storm sewer/ditch) to carry at least the 5 year event, with driveway culverts sized for the 10 year event, and bridges, cross street culverts, and similar structures designed to carry the 25 year event unless otherwise required. Structures crossing designated 1% annual chance (100-year) floodplains shall be sized to carry the 100-year flow.

DETENTION:

1. Provide complete calculations for all detention ponds. Include an exhibit showing the drainage areas and the path through each used to determine TC (show and label all segments).

2. Use an SCS Type III distribution storm and SCS curve numbers. Include a map and calculations justifying composite curve numbers.

3. Include stage/discharge curves, stage storage curves, inflow hydrographs, and outflow hydrographs.

4. Flow through detention ponds MUST be routed, and must limit post-development peak discharge to pre-development flow rates for the 2, 10, and 100 year events.

5. For drainage areas over 15 acres, use the SCS Unit Hydrograph Method and Modified Puls Routing Method. For drainage areas (parent tracts) 15 acres or less, the appropriate coefficient can be multiplied by the development area to determine required detention storage instead.

6. Where mitigation is allowed, include calculations and measurements showing that the post-development TP is less than or equal to the pre-development TP, and that all downstream structures between the development and the discharge point for the sub-basin have capacity for the increased flow.

PAVEMENT:

1. Provide sight distance calculations based on 40 mph design speed (50 mph for boulevard sections) for all horizontal and vertical curves in accordance with AASHTO regulations.

2. Provide an Engineering Study justifying any proposed regulatory signs.

3. Provide pavement design calculations establishing required thickness and reinforcement (must meet standard minimums).

4. Provide retaining wall calculations showing no sliding or rotation, and specifying the factors of safety used.

OTHER:

GEOTECHNICAL REPORT:

1. Provide a complete Geotechnical Report based on core samples taken at 200’ maximum intervals along all proposed roads. Samples must extend at least 1’ below the depth of the proposed subgrade. The report must include pavement design specifications (including calculations determining the percentage of lime or cement to be added to base and subgrade), meeting or exceeding standard minimums, and must be sealed by the Geotechnical Engineer. If desired, the report can be provided after the roads are cut to grade. In this case, the plans will be approved “Subject To” receipt of the report and matching pavement design. The report must specify whether or not the roads were cut before samples were taken.

2. Provide a geotechnical report, with borings taken at 500’ intervals to a depth at least 3’ below the flowline, along the proposed alignment of all storm sewers 42” in diameter or larger. The report shall specify required bedding (meeting or exceeding city minimum requirements).

OFFSITE EASEMENTS:

1. Where proposed utilities or altered drainage must cross adjacent property not owned by the developer, offsite easements must be acquired (by the developer) prior to plan approval. All easements required outside the plat boundary, but within property owned by the developer, must be provided before plat approval. All easements must be in acceptable form. Standard forms are available for various easement types on the Engineering web page), and must be submitted to the city for review prior to recordation. The plans may be approved subject to receipt of these easements.

ESTIMATE:

1. Provide an estimate, prepared by the engineer, specifying the total and itemizing the individual cost of all required improvements. This will be used to prepare required Subdivision Development Agreement and Financial Guarantee.
During construction, any draws requested on the financial guarantee must exactly match the itemization, quantity, and prices listed in the approved estimate.

REQUIREMENTS OF OTHER GOVERNING ENTITIES:

1. **Texas Department of Transportation permits** may be required if fronting on a State roadway. IT IS THE DEVELOPER’S RESPONSIBILITY TO OBTAIN ANY NEEDED TxDOT PERMITS. This includes (but is not limited to) permits to tie into a street or utility, or to construct a sidewalk or driveway or discharge developed drainage in the right-of-way. The city will assist as required by TxDOT upon the developer’s request.

2. All **sidewalks must conform to ADA standards.** IT IS THE DEVELOPER’S RESPONSIBILITY TO ENSURE COMPLIANCE. If the value of the project is $50,000 or greater, a copy of the T.D.L.R. Architectural Barriers Group registration number is required for plan approval.

3. A Notice of Intent (NOI) to the TCEQ may be required. IT IS THE DEVELOPER’S RESPONSIBILITY TO ENSURE THAT THIS REQUIREMENT IS MET. A copy of the NOI is required for plan approval.

4. Other **local, state, or federal agencies as well as utility providers, railroad owners, etc. may have jurisdiction over one or more aspects of the proposed development.** IT IS THE DEVELOPER’S RESPONSIBILITY TO ENSURE THAT ALL SUCH ENTITIES ARE CONTACTED AND THAT THEIR REQUIREMENTS ARE MET, INCLUDING ACQUISITION OF PERMITS, LETTERS OF AGREEMENT, ETC.